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Rigorous Proof of the High-Temperature Josephson 
Inequality for Critical Exponents 
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I give a rigorous proof of the high-temperature Josephson inequality d~/> 2 - a, 
following the original ideas of Josephson. The proof is applicable to a class of 
models including the ferromagnetic Ising model and the ep 4 lattice field theory. 
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A decade ago, Josephson (~) gave a semirigorous proof of the critical- 
exponent inequalities 2 

d,, (1) 

and 

dr'  > 2 -  a '  (2) 

These inequalities (and related ones (2-9)) are of considerable importance in 
the theory of critical phenomena (1~ , in particular, the hyperscaling conjec- 
ture (11'12) implies that they hold as equalities. 

The general opinion (3'6) seems to be that Josephson's proof is "not  
rigorous and involve[s] assumptions whose validity is rather hard to judge 
even on an intuitive basis. ''(6) For this reason, alternative methods of proof 
have been sought: Stell (13) has proven a weakened version of (1), and the 
present author (9) has proven (2). What  I should like to show here, however, 
is that Josephson's original method of proof can, with minor modifications, 
be made entirely r igorous--at  least with regard to inequality (1) - -and  that 
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the assumptions can be stated in an unambiguous form which makes clear 
their presumptive validity. 

Consider a model of classical one-component spins on a d-dimensional 
lattice, defined formally by the partition function 

Z = f  exp(J~,jotijePiqgJ)~idv(epi ) (3 )  

Here J is the inverse temperature and a,7 = aji is the pair interaction; both 
are assumed nonnegative ("ferromagnetic"). The a priori single-spin mea- 
sure dv(rp) is assumed to be an even probability measure satisfying the 
hypotheses of the Lebowitz inequality(14-17)3; examples are the spin- l /2  
Ising model dv(cp) = ~(~p2 _ 1)d~ and the ~4 lattice field theory (19'2~ dv(op) 
= const • exp( -  a~ 2 - b~o4)d% b > 0. Inequalities (1) and (2) are undoubt- 
edly true in much greater generality than this, but the present class of 
models suffices to show the method of proof. 

Josephson's inequality is a lower bound on the specific heat (per lattice 
site) 4 

1 2 
C,r = g J  ~ aojak,(~Ooepj; ~k~o,) (4) 

j,k,l 

Here (A; B)  denotes the truncated expectation (AB)- (AXB), and I 
assume that the infinite-volume limit has been taken in such a manner as to 
yield a translation-invariant ergodic state ("pure phase"). Define also the 
susceptibility (per lattice site) 4 

x = (5)  
J 

and, for each ~ > 0, the correlation length of order ~, 

,,= (X-l~. lJl~'(%;epj)) 1/" (6) 
J 

The proof of Josephson's inequality is based on the Schwarz inequality 

3The Lebowitz inequality(l~,lr) states (among other things) that (~piepj%rpl) - ( ~ i f ~ j ) ( l ~ k ~ l )  - -  

(cpi%)(cpjq~t)- (cpiq~l)(~jePk) + 2(~pi)(cpj)(%)(q~t)< 0. For the Lebowitz inequality to be 
valid, it suffices (16A7) that dp(rp) = e x p [ -  V(q~)]d% where V is even and differentiable, with 
V' convex on (0, oo); or that. dv be a limit of such measures. Also, the inequality holds for 
classical Ising models of arbitrary spin, by the "analog system" method of Griffiths. (is) 

4I consider the specific heat C,v and the susceptibility X to be defined by the stated expressions 
in terms of correlation functions. These values presumably coincide with the thermodynamic 
definitions as appropriate derivatives of the infinite-volume free energy density, but this 
equivalence is not trivial. It has, nevertheless, been proven in a number of cases; see, e.g., the 
appendix of Ref. 9. 
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for truncated expectations 5 

Here we take 

( A ; B )  2 
( B ; B )  >>- (A;A~---) (7)  

B = (8)  
i,jEA 

where A is a large but finite box of cardinality IA[; clearly 

cu > (j2/4[AI)(B; B) (9) 

by Griffiths' second inequality(15) and translation invariance. We need only 
choose a suitable A so as to make the numerator in (7) large and the 
denominator small. Since (A; B ) ~  2 O(A)/OJ for large A, 6 we wish to 
choose an A whose expectation varies rapidly with temperature near the 
critical point. Following Josephson (i) with minor modifications, we let A be 
the fluctuation of the magnetization 7 in a cell of size L (to be chosen later): 

A =  (10) 
i,j~A 

li-jl < L 

To prove an upper bound for ( A ; A )  is quite simple: by the Grif- 
fiths (15) and Lebowitz (1n-17) inequalities and translation invariance, 

0 < ( A ; A )  = ~_, @piePj;~p~%) 
i,j,k,I ~ A 
[i-j[ <<. L 

< E E (~gifPj;FPk~9l) 
i~A j,k,l 

Ik-/l<t 

<~ 2 2 E (fPi~gk)<~gj{~l> 
i~A j,k,l 

Ik-/r<L 

< const • [AILaX z (11) 

5Note that (A; B )  is a symmetric bilinear form in A and B, and it is positive because 
(A ; A) = (A 2) - (A)  2 > 0 by the ordinary Schwarz inequality. Hence the usual proof of the 
Schwarz inequality goes through entirely unchanged. I learned this simple observation from 
Antti Kupiainen. 

6If the requisite "fluctuation-dissipation theorem" holds; see the appendix of Ref. 9. 
7Since we are interested here in the region just above the critical temperature, where the 
average magnetization is zero, no such term need be subtracted from (10). But see the 
remarks at the end of this paper concerning a possible extension to the low-temperature 
critical exponents [Eq. (25) if]. 
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(Here I have anticipated the fact that the average magnetization vanishes 
for J < Jc, so that, e.g., (COl%) = (r#i; t&).) 

The lower bound on (A ; B ) is slightly (but not much) more subtle. By 
the Griffiths inequality, 8 

L* ~ %z(q~i~;cpg~h)<. ~,, li-jl*ak/,~i%;~g,~t ) 
i, j,k,l EA i,j,k,l EA 
[i--jl > L [i-j[ > L 

<-< ~ l i -  jl~'ak,('Pi,~j; ,Pk,P,) 
iEA  
j,k,l 

-- 2IAt h (x4g) (12) 

where the last equality in (12) follows from a suitable fluctuation- 
dissipation theorem (see footnote 6) (and translation invariance). Hence 

i ,j ,k,lEA -~  + 4, -~- ] (13) 
Ii-jl > L 

On the other hand, as A ~ oo we have 

]A] - l  ~ Otkl(qgi~j; ~kl~l) -'~ E akl(OigO~j; fPk~l) 
i,j,k,l E A j,k,l 

The convergence is elementary, 9 
dissipation theorem. 6 It follows that 

3X (14) - 2 0 J  

and the equality is a f luctuat ion- 

l im in f [A[ - l (A ;B)  >/ ~X * 04,/~J q A-~oo 2 -~  1 - 1 + q~ 4~ OX/~J 

We shall take 

so that 

L=[2(1 +q X 04,/3J 4, 3X/ J)] 

(15) 

(16) 

3X l iminf lAl- l (A �9 B) />  - -  (17) 
A--,oo ' OJ 

SA similar argument has been used by Fisher (6) ; cf. Eq. (39) ff. 
9Use translation invariance to rewrite the left side of (14) as ~j,k,tCjm(A)otki(epOCpj;~k~X), 
where the coefficients Cjkl(A) depend on the geometry of A. Now cjkt(A ) < 1 and cjkl(A)~ 1 
as A--)oo; so the convergence follows from the dominated convergence theorem (and 
Griffiths' inequality), provided that the sum is finite. 
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Combining (7), (9), (11), and (17), we conclude that 

C/4 > const • J2 (~X /a j )2L-dx -2  (18) 

with L given by (16). 
For lattice dimension d > 2, there is a phase transition at J equal to 

some critical value j~.(21) The critical exponents a,),, and v, are usually 
defined ~ m) by assuming that m 

C/4~(J~ - J ) - ~  (19) 

X ~ ( j  ~ _ j ) -  r (20) 

~ ,~ ( Jc  - J ) - ~  (21) 

as J'~Jc. Here we need to make a slightly stronger assumption, namely, 

~_.XX ~ ( J c  - J ) -(3, + 1) (22) 
aJ  

3 j  ~ ( J c  - J)-{"~+ ') (23) 

It then follows that L/~ ,  is bounded as J'PJc, so (18) implies immediately 
that 

dv~ > 2 - a for all q~ > 0 (24) 

This is the precise version of (1). [One can also define an exponent v 
associated with the "true" (exponential) correlation length ~; if reflection 
positivity ~22) holds, then v > vo for all ~,~9) so that (1) also holds as is.] 

Unfortunately, the foregoing argument does not immediately general- 
ize to prove the low-temperature Josephson inequality (2). In the presence 
of a nonzero spontaneous magnetization 

M = (~0o) (25) 

Josephson { l) would replace the definition (10) by 

A ' =  ~] ( % - M ) ( ~ - M )  (26) 
i, j E A  

l i - j l  < L 

Then it is not hard to show, using the version of the Lebowitz inequality 
appropriate to M 4 = O, that 

0 < (A ' ;A ' )  < const • IAI[Ldx 2 + L2dMZx] (27) 

1~ precisely, a = l ims ,sc[ - log  C,1/ log(J  c - J)], and similarly for 7 and v,~. Note, by the 
way, that a is the exponent for the full specific heat, not for its singular part. Therefore, 
a > 0 unless C n vanishes at the critical point (which is extremely unlikely). 
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This replaces  (11). The  t rouble  is with ob ta in ing  the lower b o u n d  on 

I(A'; B)[: since (q0i; ~ ;  q0kq0t) does  no t  have  any  defini te  sign, the a rgumen t  
ana logous  to (12) does no t  work  for A '  (even though one does expect  the 
ana log  of (13) to be true). T h e  diff icul ty is s imilar  to F isher ' s  ~6) inabi l i ty  to 
prove  the c r i t ica l -exponent  inequal i ty  7' < (2 - ~)p~. 

Of course,  inequal i ty  (2) [and a weakened  vers ion of the ana log  of (24)] 
has been  p roven  b y  different  means .  ~9) But it would  be p leasan t  to f ind a 
r igorous vers ion of Josephson ' s  or iginal  proof .  M t e r  all, his idea  was be t te r  
than  we h a d  thought .  

NOTE ADDED IN PROOF 

A heurist ic  discussion of the Josephson  inequal i ty  is also given by  
G l i m m  and  Jaffe ~23). 
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